A battery can be any device that stores energy for later use. The word battery is limited to an electrochemical device that converts chemical energy into electricity, by use of a galvanic cell. A galvanic cell is a simple device consisting of two electrodes – positive & negative and an electrolyte solution. Batteries consist of one or more galvanic cells with a potential difference between the electrodes.
There are different types of batteries depending on the application.
Lead Acid batteries : Used for UPS, Telecom, Automotive and industrial applications
Lithium Ion, Nickel Cadmium, Nickel Metal Hydride etc : Used in laptops, phones etc.
There’s no single formula for determining the life of a battery. The factors affecting life are many – Quality, cyclic capacity, temperature, the manner of charging, maintenance etc
All batteries have a finite shelf life. Most charged batteries will lose between 2% to 5% of capacity for every month of storage at 25 degree Celsius. Higher the temperature, higher the capacity loss. Therefore it’s important to ensure that batteries that are stored for long are given a regular maintenance charge at least once in 3 months to prolong shelf life.
Overcharging is the most destructive element in battery service. During overcharging, excessive current causes the oxides on the plates of the battery to ‘shed’ and precipitate to the bottom of the cell and also heat the battery, thus removing water from the electrolyte. Once removed, this material (which represents capacity) is no longer active in the battery. In addition, the loss of water from the electrolyte may expose portions of the plates and cause the exposed areas to oxidise and become inactive, thus reducing additional capacity. Sealed batteries are not immune from the same internal results when overcharged. In fact, sealed batteries are particularly sensitive to overcharging. Once moisture is removed from the battery, it cannot be replaced. Portions of the battery damaged due to overcharging are irretrievable. However, if detected early, corrective adjustments to the charging device will save the undamaged portion of the battery. Initial signs of overcharging are excessive usage of water in the battery, continuously warm batteries, or higher than normal battery voltages while under the influence of the charger.
Undercharging over a period of time also damages batteries. Insufficient charging leads to a problem called sulphation of the plates. This is a typical problem for long back duration UPS’s where the charger current capacity is less than 10% of the battery current rating. For example, while using a 100AH battery, the charger capacity should be ideally 10 amps.
Batteries go into a state of discharge when it reaches a voltage of 1.75 volts per cell or 10.5 volts in case of a 12 volt battery. Discharging the battery beyond this point may result in the battery reaching a point of no return. The lowest a 12V battery should be discharged to is 9.6V i.e 1.6V per cell. Continuous cycling to low voltage levels reduces the cycle life of the battery.
Most devices have a ‘low battery cut off’ voltage setting beyond which the battery is cut of from the circuit and stops discharging. If this is not present in a device using a battery, most certainly the life of the battery will be drastically reduced.
The health of an SMF battery can be determined by checking the OCV (Open circuit voltage) of the battery. A healthy battery will have an OCV above 12.8V. Any voltage below this means the battery is not sufficiently charged and needs a charge. The typical OCV readings should be as follows
The health of a flooded battery can be determined by checking the OCV and also by checking the specific gravity of the electrolyte. Specific gravity is a unit of measurement for determining the sulphuric acid content of the electrolyte. The recommended fully charged specific gravity of flooded batteries is 1.255 to 1.265 taken at 80°F. More than .025 spread in readings between fully charged cells indicates that the battery may need an equalization charge. If this condition persists, the cell is failing and the battery should be replaced. Since water has a value of 1.000, with electrolytes having a specific gravity of 1.260, it means that it is 1.260 times heavier than pure water even while pure concentrated sulphuric acid has a specific gravity of 1.835.
The following table illustrates typical specific gravity values for a cell in various stages of charge:
Battery condition at time of installation:
Site condition at time of installation:
UPS condition at time of installation:
Other precautions:
It’s a measure of the discharge time over which the battery is rated. C20 is a 20 hour discharge, C10 is a 10 hour discharge, C5 is a 1 hour discharge and so on. For example a 7 AH battery should be able to discharge 0.35 amps over 20 hours. But the same battery will probably deliver only 9 hours of discharge if discharged at 0.7 amps i.e double the current. This ratio delivers only 6.3 AH (0.7 amps * 9 hours)
While purchasing a battery it’s important to check the discharge ratios over different time periods to understand the efficiency of the battery. Any good manufacturer will always provide this data in the battery specifications.
It’s important to note that in real life, most batteries used for UPS & Telecom backup applications are discharged over a period ranging from a few minutes to maybe 4 hours. So the real AH delivered is always less than half to 3/4th’s of the rated capacity at 20 hours. This is one of the reasons why the battery over sizing has to be considered while calculating backup times for a UPS.
Float life refers to the period the battery will last when it’s under ‘float use’ i.e the battery voltage is maintained at approximately 13.5V during usage. For a layman’s understanding, this is the condition the battery is in when connected to a UPS and there is no powercut or there’s generator backup i.e battery is never discharged. Battery float life for a VRLA battery varies from 3 years to as high as 25 years depending on the design. Lower the design life, lower the cost of the battery and the quality.
Cycle life refers to the number of cycles of charge and discharge that the battery can withstand before it dies. Cycle life is referred to as ‘No. of cycles’ at a certain ‘DOD or Depth of discharge’ It can vary from as low as 300 cycles at 80% DOD for an SMF to as high as 5000 cycles for some specialised batteries like submarine batteries. Most good manufacturers will provide details of float life as well as cycle life at different DOD’s by means of a graph.
There’s no single formula for determining the life of a battery. The factors affecting life are many – Quality, cyclic capacity, temperature, the manner of charging, maintenance etc
All batteries have a finite shelf life. Most charged batteries will lose between 2% to 5% of capacity for every month of storage at 25 degree Celsius. Higher the temperature, higher the capacity loss. Therefore it’s important to ensure that batteries that are stored for long are given a regular maintenance charge at least once in 3 months to prolong shelf life.
Overcharging is the most destructive element in battery service. During overcharging, excessive current causes the oxides on the plates of the battery to ‘shed’ and precipitate to the bottom of the cell and also heat the battery, thus removing water from the electrolyte. Once removed, this material (which represents capacity) is no longer active in the battery. In addition, the loss of water from the electrolyte may expose portions of the plates and cause the exposed areas to oxidise and become inactive, thus reducing additional capacity. Sealed batteries are not immune from the same internal results when overcharged. In fact, sealed batteries are particularly sensitive to overcharging. Once moisture is removed from the battery, it cannot be replaced. Portions of the battery damaged due to overcharging are irretrievable. However, if detected early, corrective adjustments to the charging device will save the undamaged portion of the battery. Initial signs of overcharging are excessive usage of water in the battery, continuously warm batteries, or higher than normal battery voltages while under the influence of the charger.
Undercharging over a period of time also damages batteries. Insufficient charging leads to a problem called sulphation of the plates. This is a typical problem for long back duration UPS’s where the charger current capacity is less than 10% of the battery current rating. For example, while using a 100AH battery, the charger capacity should be ideally 10 amps.
Batteries go into a state of discharge when it reaches a voltage of 1.75 volts per cell or 10.5 volts in case of a 12 volt battery. Discharging the battery beyond this point may result in the battery reaching a point of no return. The lowest a 12V battery should be discharged to is 9.6V i.e 1.6V per cell. Continuous cycling to low voltage levels reduces the cycle life of the battery.
Most devices have a ‘low battery cut off’ voltage setting beyond which the battery is cut of from the circuit and stops discharging. If this is not present in a device using a battery, most certainly the life of the battery will be drastically reduced.
The health of an SMF battery can be determined by checking the OCV (Open circuit voltage) of the battery. A healthy battery will have an OCV above 12.8V. Any voltage below this means the battery is not sufficiently charged and needs a charge. The typical OCV readings should be as follows
The health of a flooded battery can be determined by checking the OCV and also by checking the specific gravity of the electrolyte. Specific gravity is a unit of measurement for determining the sulphuric acid content of the electrolyte. The recommended fully charged specific gravity of flooded batteries is 1.255 to 1.265 taken at 80°F. More than .025 spread in readings between fully charged cells indicates that the battery may need an equalization charge. If this condition persists, the cell is failing and the battery should be replaced. Since water has a value of 1.000, with electrolytes having a specific gravity of 1.260, it means that it is 1.260 times heavier than pure water even while pure concentrated sulphuric acid has a specific gravity of 1.835.
The following table illustrates typical specific gravity values for a cell in various stages of charge:
Battery condition at time of installation:
Site condition at time of installation:
UPS condition at time of installation:
Other precautions:
" Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Nelson Helso
Relicell © All Rights Reserved - 2023